
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Mean-field theory of fluid neural networks
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Fluid neural networks~FNN! are a mathematical framework where the phenomenon of self-synchronization
in ant colonies can be explained, predicting the model a critical density, i.e., a density where oscillations
appear, observed in real ant colonies. However, up to now all results have been solely numerical. In this paper
we put forward a simple FNN with the same phenomenology as the original one, but an analytical approxi-
mation can be performed in such a way that critical densities can be computed, offering a good approximation
to the numerical ones.@S1063-651X~98!14602-0#

PACS number~s!: 87.10.1e, 84.35.1i, 05.45.1b
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I. INTRODUCTION

Collective behavior in ant colonies is undoubtedly a fa
cinating subject. Hundreds or thousands of smallsimple in-
sects display coordinated collective patterns of complex
haviors, such as raid patterns, food foraging, brood care,
allocation, or nest building, showing how, generally spe
ing, simpleinteracting individuals can behave as a whole
unexpected ways. Swarm behavior has attracted the atte
of physicists working on critical phase transitions or dynam
cal systems. It has been shown that behind some phenom
such as trail patterns@1# or self-synchronization of activity
@2# there are mechanisms well known to physicists, wh
noise-induced transitions@3# or marginal stability@4# are but
a few examples. Beyond the classical interest in swarm
havior from biologists@5#, complexity sciences have take
ant colonies as one of the main subjects of study in th
quest for laws behind complex phenomena@6#.

The mechanisms underlying swarm intelligence, as i
also called, are certainly not few in number though we w
be interested mainly in mechanisms by which the global p
formance of the colony goes beyond that of individuals, su
as interactions by means of laying pheromones or by ph
cal contact among individuals. These different ways of int
action may generate striking behaviors, such as stigmer~a
stigmergic process, following Wilson@7#, is a process by
which it is the work already accomplished that induces
insects to perform additional labor! or the one we will focus
on in this paper: self-synchronization.

Some experiments withLeptothorax acervorumants by
Franks@8# andLeptothorax allardyceiby Cole @2# revealed
the existence of short-term rhythms of activity. This synch
nization in activity seems to be especially apparent in nu
workers, where cycles of approximately 20 min~15 min of
quiescence plus 2–5 min of activity! have been measured
There exist some mathematical models of this behavio
very different frameworks: differential equations@9#, proba-
bilistic process algebra@10# or fluid neural networks~FNN!
@11#, though up to now it is far from clear which one is be
fitted to the phenomenon under study. The interest in s
synchronization is not solely a biological one, since this p
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nomenon has been shown to be related to mutual exclu
in brood care@12# and task allocation@13#. Thus, the pos-
sible usefulness of self-synchronization in ant colon
makes it also interesting for distributed asynchronous al
rithm designers.

In this paper we offer an analytical approximation
FNNs, one of the mathematical models of se
synchronization in ant colonies@14#. After reviewing the
original FNN in Sec. II, in Sec. III we introduce and justif
what we believe is a simpler FNN, with the same pheno
enology as the original one, where analytical approximatio
can be made in order to obtain critical densities near to
ones computed numerically.

II. FLUID NEURAL NETWORKS

FNNs are defined as formal neurons@15# moving on a
lattice. Each ‘‘neuron ant’’ has a continuous stateSi(t)
PR, at each time stept. Interaction with nearest individuals
located in the neighborhoodB( i ) defined by the eight neares
lattice sites, is defined by

Si~ t11!5FFgH Jii Si~ t !1 (
iÞ j PB~ i !

Ji j Sj~ t !2Q i J G ,
whereJii Þ0. For simplicity we use the thresholdQ i50, and
we takeF(z)5tanh(gz) whereg is a gain parameter. Eac
automaton can be eitheractiveor inactive, depending on the
stateSi(t) and, if active, it moves randomly to one of th
eight nearest cells~if no space is available, no moveme
takes place!. In FNN a given automaton will be active if it is
above some thresholduact, Si(t).uact, and inactive other-
wise. Once an automaton becomes inactive, it can retur
the active state~with a spontaneous activity level Sa! with
some probabilitypa . The coupling matrixJ is not fixed.
Connections are local and changing over time as a co
quence of movement. They are also state dependent, i.eJi j
will be a simple function of the states of the actually inte
acting pair (i , j ) of automata, i.e.,Ji j 5 f (ai

t ,aj
t ), whereai

t
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FIG. 1. Temporal behavior ofr t
1 , with parametersL550, Sa50.1, g50.1, uact510216, pa50.01, and~a! r50.10, ~b! r50.15, ~c!

r50.20, ~d! r50.25, ~e! r50.30, ~f! r50.35.
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5Q„Si(t)2uact…. In our case, where two basic states are
fined the connection matrix reduces to the following 232
table:

L5Fl11

l01

l10

l00
G .

At a given time step, the interactionJi j between thei th
and thej th elements is equal tola

i
ta

j
tPL by depending on

the activity states of the given elements. More precisely,Ji j
will be equal tol11 when both ants are active, tol10,l01
when one is active and the other inactive, and tol00 if both
automata are inactive.

This model is able to account for the oscillations observ
in the experiments~see Fig. 1!. The model also allows one t
-

d

define a critical density of active elements, i.e., a dens
where oscillations appear, that is approximately the sa
density observed usually in ant colonies~for ‘‘realistic’’ sets
of parameters, see below! @14#: rc.0.2. Furthermore, recen
work has shown that noise is a determinant in the mechan
of oscillations, through spontaneous activation, sugges
that oscillations appear at a noise-induced transition@16# ~see
@3# for a description of noise-induced transitions!. An order
parameter for FNNs was also found in@16#: assuming the
transition to be noise induced we can define an order par
eter by using the stationary density of active elementsP(r1)
~computed by means of histograms!. If we definerm

1 such
that

P~rm
1!5 max

r1P@0,1#

P~r1!
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FIG. 2. Order parameterG(r,pa) with parametersL550, Sa50.1, g50.1, uact510216, and~a! pa50.01, ~b! pa50.001.
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the order parameter will be defined by

G~r,pa!512rm
1 .

As seen in Fig. 2 the value ofG is zero after the transition
and nonzero before the transition and, as was shown in@16#,
the critical densityrc is the same as the one that was fo
merly determined in @14# by means of the Shannon
Kolmogorov entropy.

There has been experimental work measuring some
rameters of FNN, such asJi j ~interaction between ‘‘neuron
ants,’’ assumed to be 1 in theoretical simulations! andg ~the
gain parameter of the nonlinear interaction among indivi
als, assumed to be 0.1 in the model! @17#.

III. SIMPLE FLUID NEURAL NETWORKS

Some features of the original FNN, as defined in Sec.
can be considerably simplified. We will define the simp
FNN ~SFNN! in the following way: We haveN individuals
Si(t)PR that change their state according to

Si~ t11!5gSi~ t !1g(
j t*

Ji j
t*
Sj

t*
~ t !1SaQ„uact2Si~ t !…I i

t ,

~1!

whereI i
tP$0,1% with probability P(I i

t51)5pa and we have
made a first-order approximation of tanh: tanh(x).x remov-
ing one of the nonlinearities of the original FNN. The mea
ing of Ji j , Sa , pa , andg is the same as in the original FNN
~Sec. II.!. Active states will be defined byai

t5Q„Si(t)
2uact….

The meaning ofj t* is theneighborhood. At a given time
stept, the local fieldhi(t)5S j

t*
Ji j

t*
Sj

t*
(t) will be computed

for all i beforethe change of stateSi(t11) is performed. In
order to do so,for each individual Si(t), K random connec-
tions to some individuals will be established~these individu-
als will be calledthe neighbors!. K is chosen randomly from
the distribution
a-

-

I,

-

P~K5k!5S V
k D rk~12r!V2k. ~2!

This has the same effect as if we threw, at each time s
and for each elementSi(t), all the N elements upon anL
3L lattice~thenr5N/L2 will be the density of elements!, in
order to compute the corresponding local fieldhi(t). Thus,
we get some kind of ‘‘annealed’’ movement. This is simil
to the mean field approximation made in spatially distribu
epidemic models@18#, where movement was dependent on
parameterm such that the limitm→` was in fact the same
as throwing randomly all the elements upon the lattice
each time step. In our case we do so to compute each l
field hi(t), so our system is, in this sense, more disorder

Considering the density of active individuals at timet,

r t
15

1

N (
i 51

N

Q„Si~ t !2uact…, ~3!

we can see in Fig. 3 thatr t
1 in SFNN has the same tempor

behavior asr t
1 in FNN: irregular behavior at low densitie

and more ordered oscillatory behavior for growingr. This
allows one to apply the FNN order parameter in this ca
too. We can seeG(r,pa), as defined in Sec. II, in Fig. 4
computed for a SFNN.

To sum up, we have a simple FNN, where some non
earities have been removed and where each individua
each time step, establishes connections randomly, as if
had some kind of ‘‘annealed’’ movement. This has simp
fied considerably the model without loss of interesting b
havior because both FNN and SFNN are phenomenol
cally identical. In the rest of the paper we will explore th
relation between the critical densityrc and activation prob-
ability pa in SFNN ~as we did numerically with FNN in
@16#!. The other parameters will be fixed tog50.1, V54,
Sa50.1,Ji j 51 for all i , j anduact510216 ~see@14# and@16#
for a justification of this parameter set!.
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FIG. 3. Temporal behavior ofr t
1 in SFNN, with parametersL5100,Sa50.1, g50.1, uact510216, pa50.01, andV54.
ac-
-

IV. ANALYTIC APPROXIMATION OF rc

The analysis will be performed forr.rc , that is, in the
region of well developed oscillations. There the behavior o
activity spreading is quite well defined: as we see in Fig.
the role of spontaneous activation is merely that of startin

FIG. 4. Order parameterG(r,pa) in SFNN with parametersL
5100, Sa50.1, g50.1, uact510216, pa50.01, andV54. Each
point has been computed with 104 time steps after 23103 transito-
ries.
f
5
g

FIG. 5. At each time step the number ofnewactive individuals
due to interactions and the number ofnewspontaneous active indi-
viduals are represented, so new active individuals are classified
cording to how they became active.Values in the spontaneous ac
tivation curve are multiplied by10. Parameters areL5100, Sa

50.1, g50.1, uact510216, pa50.01,V54, andr50.25.
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the process of activity propagation, a process that contin
by means of interaction among individuals until activi
reaches the whole system (r t

151). This would allow us to
analyze separately activity propagation and inactivation,
suming in both cases that there is no spontaneous activa

First of all we will find a condition onV andg to assure the decay of th
system to a state where allN elements are inactive. With the above me
tioned assumption the evolution forSi(t) will be

Si~ t11!5gSi~ t !1g(
j t*

Sj
t*
~ t !.

To see the global evolution of theN individuals we can
derive a discrete equation for the state average^S(t)&
5(1/N)( i 51

N Si(t) if we approximate the term( j
t*
Sj

t*
(t) by

the mean-field versionVr^S(t)& so that

^S~ t !&5@g~11Vr!# t^S~0!&

and we can assure activation decay ifg(11Vr),1. If we
assume thatr is as large as possible (r51), we get the
condition

g,
1

11V
,

which is satisfied in our case, becauseg50.1 andV54. Of
course, if^S(t)& tends to 0,r t

1 will tend to 0 too. Let us
remark that, thougĥS(t)& tends to zero exponentially bu
smoothly,r t

1 goes to 0 in very few time steps~as can be
seen in Fig. 3 whenr.0.2!.

Now let us study the propagation of activation through
system. In@16# we put forward the hypothesis that only tw
factors were important in order to understand FNN osci
tions: the average timet8(r,pa) one individual is active be-
tween two inactive states and activity propagati
YbNpac(N,L,pa), that is, the average number of time ste

necessary to reach the state ofr t
151 from an initial state

where bNpac individuals are active, i.e., the mean~integer!
number of individuals that would active spontaneously w
probability pa in a system with allN elements inactive.
These are precisely the factors we will analyze in order
compute analyticallyrc . Intuitively, if YbNpac(N,L,pa) is

less thant8(r,pa) the state of maximum activation will b
reachedbefore individuals start the process of inactivatio
then we will observe oscillations. So then,rc will be such
that

YbNpac5t8. ~4!

Activity spreading can be treated as a branching proce
when considering activity by interaction we take into a
count only the stateai

t of each individual. In this way, we
will say that an inactive individual is activated by its neig
bors if there is at least one of them active@it is obvious that
this is not theexactmechanism by which individuals activat
each other, since an individual with all neighbors acti
each one with a very smallSi(t), might not be activated#.
The probability of having at least an active individual as
es

s-
n.

e

-

o

if
-

,

neighbor is easy to compute because of the ‘‘annealed m
ment’’ we have introduced. If we havei active individuals,
the above-mentioned probability is

g i512S 12
i

L2D V

. ~5!

As we are only considering activity spreading in the o
cillation phase, there will be no activity decay, allowing us
compute the probability ofj active individuals havingi in-
dividuals active in the previous time step

Pi j 5P~At115 j uAt5 i !

5H S N2 i
j 2 i Dg i

j 2 i~12g i !
N2 j , if i< j

0, otherwise
, ~6!

whereAt is the number of active individuals at timet. This
defines a branching process that will finish whenA5N. We
will treat this process as a Markov chain@19# with the sto-
chastic matrix

P5S P11

0
A
0

P12

P22

A
0

•••
•••
�

•••

P1N

P2N

A
PNN

D ~7!

with which we can compute the mean number of steps be
being absorbed by the unique closed class of our system
one element set$N%. In order to perform the calculations, th
P matrix has to be rearranged to get the canonical form

P* 5S P1

R
0
QD5S PNN

P1N

P2N

A
P~N21!N

0
P11

0
A
0

•••
•••
•••
�

•••

0
P1~N21!

P2~N21!

A
P~N21!~N21!

D
~8!

so that thefundamental matrix M5@ I 2Q#21 of the Markov
chain can be found. The matrixM plays a central role in
transient analysis of Markov chains@19#. M gives immedi-
ately the quantity we want to compute. It is easy to ver
that the i j th element ofQk, qi j

(k) , is the probability of a
transition from the stateA5 i to the stateA5 j in exactlyk
steps. The average number of times that, starting in staA
5 i , the process reaches stateA5 j before it leaves transien
states and enters the closed class is

qi j
~0!1qi j

~1!1qi j
~2!1•••1qi j

~k!1•••

that is, preciselyMi j , since the identity

M5@ I 2Q#215I 1Q1Q21•••1Qk1•••

follows from the fact thatQ has all the eigenvalues strictl
inside the unit circle~the eigenvalues ofQ are l j5Pj j for
1< j <N21 andl j,1 sinceP is a stochastic matrix!. If 1 is
a column vector whose components are all equal to 1,
mean number of steps before reaching the state of all i
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FIG. 6. The mean time an individual is active between two inactivations. We can see that^t& is density dependent with a clear chan
in the shape of the curve aroundrc ~rc.0.212 in this case!. Parameters areL5100,Sa50.1,g50.1,uact510216, pa50.01, andV54. ^t&
is computed from 103 time steps after 103 transitories.
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viduals active, taking as a departure point a stateA5 i , is the
i th component of the vectorM1. So, if Yj5(M1) j , solving
the linear system

M 21Y5~ I 2Q!Y51

we can compute anyYj with the recurrence

Yj5~12Pj j !
21S 11 (

i 5 j 11

N21

Pji Yi D , ~9!

which can be computed easily, due to the fact thatPi j 50 if
j , i .

Now that we haveYbNpac(N,L,pa) we need to compute

t8(r,pa). This is a rather difficult calculation and we hav
approximatedt8(r,pa) by the inactivation time of a solitary
individual subject to simple perturbations

St115gSt1j t , ~10!

where j t are independent identically distributed~IID ! ran-
dom variables. These random variables will be such that
should assure that̂St&→uact, so we will impose^j t&5(1
2e)uact where e is a free parameter whose value will b
established below. The evolution of^St& is easily found
~with S05Sa! from

St5gtSa1(
j 51

t

gt2 jj j

and it is

^St&5gtSa1~12e!uactGt , ~11!

where

Gt5(
j 50

t21

gj .
e

Sinceg51021, Gt is easily calculated and it is quite obviou
that it can be approximated byG` . So then, our estimation
of t8(r,pa), tper, will be given by

tper5~ log10 g!21$ log10 uact2 log10 Sa

1 log10@12G`~12e!#%. ~12!

From Eq.~12! it is clear thate is bounded by

e.12
1

G`
,

that is, e.0.1 and by e,1, because ife51 then ^St&
5gtSa and

tper5
log10~uact/Sa!

log10~g!
,

that is, tper515 for the set of parameters we are workin
with.

But how do we determine exactly the value ofe? At this
point we must resort to the numerically computedt8(r,pa)
for the SFNN~see Fig. 6!. Let de5e20.1. From Eq.~12! we
see thattper gets larger asde gets smaller, but, looking a
Fig. 6, particularly at the region aroundrc , we see that atper
much larger than 15 does not make sense. Therefore, we
fix de50.01, a value large enough to keeptper in the ‘‘mean-
ingful’’ region and small enough to maketper.15. Finally,
with the set of parameters we have been using and thede
mentioned above,tper.16.95.

Once we haveYbNpac(N,L,pa) andt8(r,pa).tper we can

find a densityrc such thatYbNpac.tper. This analytically

computedrc
an is compared with a numerically determinedrc

nu

using the order parameterG(r,pa), in Fig. 7. rc
an and rc

nu

both have a linear dependence on log10(pa) and agree accu
rately.
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FIG. 7. rc
nu ~open circles! andrc

an ~solid circles! as a function of log10(pa) Parameters areL5100, Sa50.1, g50.1, uact510216, and
V54. rc

nu is computed fromG(r,pa) with 104 time steps after 23103 transitories, averaged over 10 samples.
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V. DISCUSSION

In this paper we have explored the emergence of osc
tory behavior in a mean-field model of FNNs. FNNs ha
been successfully used as models of collective beha
from oscillations@11,14# to the problem of universal compu
tation @20#. The introduction of mobility by simple units en
ables us to go beyond the classical models based on exc
systems@21# though it also makes it difficult to reach an
lytic results. Here, following a mean-field approach to
original FNN with sigmoidal response, we have derived
simple analytic result that provides a good understanding
the origin of oscillatory behavior and the existence of noi
induced transitions.

Some simplifications on the FNN model have allowed
to define the SFNN, with identical phenomenology but w
the possibility of performing analytical work. Working o
ther.rc phase we have assumed no spontaneous activ
and we have analyzed separately the inactivation process
the activation process, that is, the two parts that compose
oscillation in ther t

1 curve. We have derived a relation b
tweeng and V in order to assure inactivation and we ha
checked a hypothesis put forward in@16# in order to approxi-
mate rc . This hypothesis and approximations
YbNpac(N,L,pa) andt8(r,pa).tper provide arc

an value that
n

m
fi
e

la-
e
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able
-
e
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agrees withrc
nu @obtained fromG(r,pa)#. Work in progress

is focusing on a better analytical approximation oft8(r,pa)
through the inclusion of interactions among individua
since the perturbation approach, which needs the intro
tion of a parametere whose value has to be found heuris
cally, is not entirely satisfactory.

Finally let us note that our analytic work makes clear t
it does not make sense to consider the largeN andL cases,
since our system depends on the mean time of activity pr
gation YbNpac(N,L,pa), which grows withN and L so in a

‘‘thermodynamic limit’’ it will diverge, and ont8(r,pa) that
is density dependent~see Fig. 6!. Therefore, in the limit of
largeN andL there will be no oscillations, which have be
observed in both the FNN and the SFNN@22#. Then, in what
sense do we refer to a ‘‘mean-field’’ theory? The point h
is theannealed movementof the individuals that decorrelate
completely their interactions@18#. This is a mean-field ap
proximation, despite its departure from the behavior
mean-field theories in equilibrium systems@23#.
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