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Fluid neural network$FNN) are a mathematical framework where the phenomenon of self-synchronization
in ant colonies can be explained, predicting the model a critical density, i.e., a density where oscillations
appear, observed in real ant colonies. However, up to now all results have been solely numerical. In this paper
we put forward a simple FNN with the same phenomenology as the original one, but an analytical approxi-
mation can be performed in such a way that critical densities can be computed, offering a good approximation
to the numerical one$S1063-651X98)14602-0

PACS numbd(s): 87.10+€, 84.35+i, 05.45+b

[. INTRODUCTION nomenon has been shown to be related to mutual exclusion
in brood careg[12] and task allocatiofi13]. Thus, the pos-
Collective behavior in ant colonies is undoubtedly a fas-sible usefulness of self-synchronization in ant colonies
cinating subject. Hundreds or thousands of sraatiplein- makes it also interesting for distributed asynchronous algo-
sects display coordinated collective patterns of complex betithm designers.
haviors, such as raid patterns, food foraging, brood care, task !n this paper we offer an analytical approximation to
allocation, or nest building, showing how, generally speakFNNs, one of the mathematical models of self-
ing, simpleinteractingindividuals can behave as a whole in Synchronization in ant coloniegl4]. After reviewing the
unexpected ways. Swarm behavior has attracted the attenti@figinal FNN in Sec. II, in Sec. lll we introduce and justify
of physicists working on critical phase transitions or dynami-what we believe is a simpler FNN, with the same phenom-
cal systems. It has been shown that behind some phenomefiR0I0gy as the original one, where analytical approximations
such as trail patternB]_] or Se'f-synchronizaﬂon of activity can be made n Order .tO Obta]n Cr|t|Ca.| denSItIeS near to the
[2] there are mechanisms well known to physicists, wher@nes computed numerically.
noise-induced transitior{8] or marginal stabilityf4] are but
a few examples. Beyond the classical interest in swarm be-
havior from biologistg[5], complexity sciences have taken
ant colonies as one of the main SUbjeCtS of StUdy in their FNNs are defined as formal neuro[ﬁ] mo\/ing on a
quest for laws behind complex phenomé6a lattice. Each “neuron ant” has a continuous stagdt)
The mechanisms underlying swarm intelligence, as it isc R, at each time step Interaction with nearest individuals,

also called, are certainly not few in number though we willjpcated in the neighborhodg(i) defined by the eight nearest
be interested mainly in mechanisms by which the global pertattice sites, is defined by

formance of the colony goes beyond that of individuals, such

as interactions by means of laying pheromones or by physi-

cal contact among individuals. These different ways of inter- _

action may generate striking behaviors, such as stigrtery S(H1)_q{g{‘]“si(t)+#g‘3(i) Jiisi(t)_@i”’

stigmergic process, following Wilsofi7], is a process by

which it is the work already accomplished that induces the

insects to perform additional laboor the one we will focus  WhereJ;; # 0. For simplicity we use the threshofd} =0, and

on in this paper: self-synchronization. we take®d(z) =tanh@2 whereg is a gain parameter. Each
Some experiments witheptothorax acervorunants by automaton can be eithactiveor inactive depending on the

Franks[8] and Leptothorax allardyceby Cole[2] revealed stateSi(t) and, if active, it moves randomly to one of the

the existence of short-term rhythms of activity. This synchro-€ight nearest cell¢if no space is available, no movement

nization in activity seems to be especially apparent in nurséakes place In FNN a given automaton will be active if it is

workers, where cycles of approximately 20 nfitb min of ~ above some threshold., Si(t)> 60,¢, and inactive other-

quiescence plus 2—5 min of activithave been measured. wise. Once an automaton becomes inactive, it can return to

There exist some mathematical models of this behavior ithe active statéwith a spontaneous activity level,BSwith

very different frameworks: differential equatiof@|, proba- some probabilityp,. The coupling matrixJ is not fixed.

bilistic process algebrEL0] or fluid neural network§FNN)  Connections are local and changing over time as a conse-

[11], though up to now it is far from clear which one is best quence of movement. They are also state dependent];j.e.,

fitted to the phenomenon under study. The interest in selfwill be a simple function of the states of the actually inter-

synchronization is not solely a biological one, since this pheacting pair (,j) of automata, i.e.J;; =f(al ,a}), wherea!
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FIG. 1. Temporal behavior gf, , with parameters =50, S,=0.1,g=0.1, f,,= 10", p,=0.01, and(a) p=0.10, (b) p=0.15,(c)

p=0.20,(d) p=0.25,(e) p=0.30, (f) p=0.35.

=0(S(t)— 0,). In our case, where two basic states are dedefine a critical density of active elements, i.e., a density

fined the connection matrix reduces to the following 2
table:

)\11 )\10

A= .
[)\01 )

At a given time step, the interactiah; between theth
and thejth elements is equal tlnaira}eA by depending on

the activity states of the given elements. More precisély,
will be equal to\;; when both ants are active, 10,5,Ao;
when one is active and the other inactive, and ggif both
automata are inactive.

where oscillations appear, that is approximately the same
density observed usually in ant colonidsr “realistic” sets

of parameters, see belp\d4]: p.=0.2. Furthermore, recent
work has shown that noise is a determinant in the mechanism
of oscillations, through spontaneous activation, suggesting
that oscillations appear at a noise-induced transftidh (see

[3] for a description of noise-induced transitionAn order
parameter for FNNs was also found [ih6]: assuming the
transition to be noise induced we can define an order param-
eter by using the stationary density of active elem@&fis*)
(computed by means of histogram#f we definep,, such

that

This model is able to account for the oscillations observed P(p,)= max P(p™)

in the experimentssee Fig. 1L The model also allows one to

pTe[01]
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FIG. 2. Order parametdt(p,p,) with parameterd =50, S,=0.1,g=0.1, 6,.= 10" ', and(a) p,=0.01, (b) p,=0.001.

the order parameter will be defined by

Vv
P(K=k)= (1Y% @

T(p.pa)=1-pj.

As seen in Fig. 2 the value &fis zero after the transition This has the same effect as if we threw, at each time step
and nonzero before the transition and, as was shoyhdy  and for each elemen§(t), all the N elements upon ah
the critical densityp, is the same as the one that was for- X L lattice (thenp=N/L? will be the density of elemenisin
merly determined in[14] by means of the Shannon- order to compute the corresponding local fibldt). Thus,
Kolmogorov entropy. we get some kind of “annealed” movement. This is similar

There has been experimental work measuring some pde the mean field approximation made in spatially distributed
rameters of FNN, such a¥; (interaction between “neuron epidemic model$18], where movement was dependent on a
ants,” assumed to be 1 in theoretical simulatipasdg (the  parametem such that the limim—o was in fact the same
gain parameter of the nonlinear interaction among individu-as throwing randomly all the elements upon the lattice at

als, assumed to be 0.1 in the moddl7]. each time step. In our case we do so to compute each local
field h;(t), so our system is, in this sense, more disordered.
IIl. SIMPLE FLUID NEURAL NETWORKS Considering the density of active individuals at titne

Some features of the original FNN, as defined in Sec. I, N
can be considerably simplified. We will define the simple +_£ _
FNN (SFNN) in the following way: We haveN individuals Pl =N 2 OBV ba), ®)
Si(t) e R that change their state according to

. we can see in Fig. 3 that” in SFNN has the same temporal
Si(Hl):gS!(t)’ng JijSjx (1) + 830 (Oac— SO, behavior asp,” in FNN: irregular behavior at low densities
It and more ordered oscillatory behavior for growipgThis
@ allows one to apply the FNN order parameter in this case
too. We can seé'(p,p,), as defined in Sec. Il, in Fig. 4,
computed for a SFNN.
To sum up, we have a simple FNN, where some nonlin-
ing of J:, S... p,. andg is the same as in the original FNN earities have been rer_noved and where each individua_1|, at
rTa Mas . : t each time step, establishes connections randomly, as if we
(Sec. 1I). Active states will be defined by;=6(S(t) had some kind of “annealed” movement. This has simpli-
~ Oac)- ) . ) ) ) fied considerably the model without loss of interesting be-
The meaning of; is theneighborhoodAt a given time  hayior because both FNN and SFNN are phenomenologi-
stept, the local fieldh;(t) =2« J;;» S« (t) will be computed ¢4y identical. In the rest of the paper we will explore the
for all i beforethe change of statg(t+ 1) is performed. In  relation between the critical densipg and activation prob-
order to do sofor each individual gt), K random connec- ability p, in SFNN (as we did numerically with FNN in
tions to some individuals will be establishétiese individu- [16]). The other parameters will be fixed gp=0.1, V=4,
als will be calledthe neighbors K is chosen randomly from  S,=0.1,J;;=1 for alli, j and 0.~ 1016 (see[14] and[16]
the distribution for a justification of this parameter $et

wherel! e{0,1} with probability P(1!=1)=p, and we have
made a first-order approximation of tanh: tax)k{x remov-
ing one of the nonlinearities of the original FNN. The mean-
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FIG. 3. Temporal behavior gf;" in SFNN, with parameterk =100, S,=0.1,g=0.1, §,,=10" 5 p,=0.01, andV=4.

IV. ANALYTIC APPROXIMATION OF p.

The analysis will be performed fg&>p., that is, in the
region of well developed oscillations. There the behavior ol
activity spreading is quite well defined: as we see in Fig. £
the role of spontaneous activation is merely that of startin¢
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FIG. 4. Order parametdr(p,p,) in SFNN with parameters
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point has been computed with“.me steps after & 10° transito-
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viduals are represented, so new active individuals are classified ac-
cording to how they became activéalues in the spontaneous ac-
tivation curve are multiplied byl0. Parameters are=100, S,
=0.1,g=0.1, 0,,=10"16, p,=0.01,V=4, andp=0.25.
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the process of activity propagation, a process that continuaseighbor is easy to compute because of the “annealed move-
by means of interaction among individuals until activity ment” we have introduced. If we haveactive individuals,
reaches the whole systemp,(=1). This would allow us to the above-mentioned probability is

analyze separately activity propagation and inactivation, as-
suming in both cases that there is no spontaneous activation.

i \%
. o vi=1- 1—;)- ©®)
First of all we will find a condition orlV andg to assure the decay of the
system to a state where &ll elements are inactive. With the above men-
tioned assumption the evolution f&(t) will be As we are only considering activity spreading in the os-
cillation phase, there will be no activity decay, allowing us to
compute the probability of active individuals having in-

Si(t+ DZQS(tHQE Sif(t)' dividuals active in the previous time step
Jt

. o Pij:P(At+1:j|At:i)
To see the global evolution of the individuals we can

derive a discrete equation for the state averd@ét)) TN i N i <
—(UN)=]L,S(1) if we approximate the tern+S;x (t) by R A T b T
the mean-field versiol p(S(t)) so that 0, otherwise

(S(t)y=[g(1+Vp)1(S(0)) whereA, is the number of active individuals at tinte This

defines a branching process that will finish whiern N. We

and we can assure activation decag(fL+Vp)<1. If we  Will treat this process as a Markov chdih9] with the sto-
assume thap is as large as possibleo€1), we get the chastic matrix

condition
Piu P o0 Py
1 0 Py, -+ Poy
g 1+V' : : .. :
0 0 b PNN

which is satisfied in our case, because 0.1 andV=4. Of ) )
course, if(S(t)) tends to 0,p; will tend to O too. Let us with which we can compute the mean number of steps before

remark that, thougl{S(t)) tends to zero exponentially but being absorbed by the unique closed class of our system, the

smoothly, p;” goes to 0 in very few time step@s can be gne ele_mﬁnt se{ﬂ\tl)}. In ordertodperform ;[]he calcullatul)?s, the
seen in Fig. 3 whep>0.2). matrix has to be rearranged to get the canonical form

Now let us study the propagation of activation through the = 0 0
system. In[16] we put forward the hypothesis that only two NN
factors were important in order to understand FNN oscilla- P, O Pin Pu - Pin-y
tions: the average time’ (p,p,) one individual is active be- p* Z( R Q) =| Pan 0 o Paney
tween two inactive states and activity propagation i : oo
Yinp,J(N,L,pa), that is, the average number of time steps Pn-yn O o Pin—1yn-1)

necessary to reach the stategf=1 from an initial state
where|Np,| individuals are active, i.e., the medimtege)

number of individuals that would active spontaneousl! WithsO that thefundamental matrix M=[1 — Q] of the Markov
P y chain can be found. The matrid plays a central role in

?—Loebsaeng p?elc?is:I S¥r?éegc¥;|:2 v?gNwiﬁlzwaeIn;Se I;]']ag'{rl(\j/g.r ¢ c;[ransient analysis of Markov chaif$9]. M gives immedi-
precisely o . Y . ately the quantity we want to compute. It is easy to verify
compute analyticallyp.. Intuitively, if Y[NpaJ(N,L,pa) is

, N , that theijth element ofQ¥, g, is the probability of a
less thant'(p,p,) the state of maximum activation will be

hedbefore individual h £ 0 PR transition from the staté =i to the stateA=j in exactlyk
reachedoeforeindividuals start the process of Inactivation, giens The average number of times that, starting in #tate
then we will observe oscillations. So them, will be such

h =i, the process reaches stdte- j before it leaves transient
that states and enters the closed class is

YiNo. =T - 4 0 1 2 k
INp =T 4) A0+ +gP 4+ g+

Activity spreading can be treated as a branching process that is, preciselyM;; , since the identity
when considering activity by interaction we take into ac-
count only the stata! of each individual. In this way, we M=[1-Q] =1+Q+Q%+ -+ QK+---
will say that an inactive individual is activated by its neigh-
bors if there is at least one of them actiieis obvious that follows from the fact thaQ has all the eigenvalues strictly
this is not theexactmechanism by which individuals activate inside the unit circlethe eigenvalues o are \;=Pj; for
each other, since an individual with all neighbors active,1<j<N-—1 and\;<1 sinceP is a stochastic matrjxIf 1is
each one with a very sma$(t), might not be activated a column vector whose components are all equal to 1, the
The probability of having at least an active individual as amean number of steps before reaching the state of all indi-
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in the shape of the curve aroupd (p.=0.212 in this case Parameters arfe=100,S,=0.1,g=0.1, f,,=10"15, p,=0.01, andv=4.(7)
is computed from 1Dtime steps after f0transitories.

viduals active, taking as a departure point a sfatd, is the  Sinceg=10"1, G, is easily calculated and it is quite obvious
ith component of the vectdvl 1. So, if Yj=(M1);, solving that it can be approximated iy... So then, our estimation
the linear system of 7/(p,Pa)s Tper, Will be given by

-1y — — = —
MZY=(0-Q)Y=1 7'per:(lc’glo 9) 1{|0910 Oact— 100910 Sa

we can compute any; with the recurrence +logid 1-G.(1-¢€)]}. (12
N—1
_ From Eq.(12) it is clear thate is bounded b
Y,=(1-P;)* 1+i=j2+1 PiYil, 9) a-(12 y
which can be computed easily, due to the fact ®at=0 if e>1- [

j<i.
Now that we haveY|yp,(N,L,ps) we need to compute . is ~0.1 and bye<1, because ife=1 then (S)
7' (p,pa)- This is a rather difficult calculation and we have =g's, and
approximatedr’ (p,p,) by the inactivation time of a solitary
individual subject to simple perturbations 1014 faci/ S.)
_ act/ “a

Si+1=9S+¢;, (10 Tper™ logio(9)

where & are independent identically distribut¢tlD) ran-  that is, 7,,~=15 for the set of parameters we are working
dom variables. These random variables will be such that wevith.
should assure thatS;)— 0., so we will impose(&;)=(1 But how do we determine exactly the value & At this
—€) 0, Where € is a free parameter whose value will be point we must resort to the numerically computedp,p,)
established below. The evolution @5,) is easily found for the SFNN(see Fig. 6. Let §.= e—0.1. From Eq(12) we
(with Sy=S,) from see thatrpe, gets larger ass, gets smaller, but, looking at
Fig. 6, particularly at the region aroupd, we see that ap,
. ‘ i much larger than 15 does not make sense. Therefore, we will
S=9'S;+ ‘21 g g fix 5.=0.01, a value large enough to keeg, in the “mean-
= ingful” region and small enough to maksg,,>15. Finally,
with the set of parameters we have been using andsthe
mentioned abover,.~16.95.
(S)=0'S,+ (1—€) 0,.G , (11) Once we have(LNpaJ(N, L,pa) and 7’ (p,pa) = 7per WE CaN
find a densityp. such thatYleanrper. This analytically
where computedp"is compared with a numerically determingf
-1 using the order parametét(p,p,), in Fig. 7. p2" and p"
G.= 2 i both have a linear dependence on,lfg,) and agree accu-
= g- rately.

and it is
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V. DISCUSSION agrees withp™ [obtained fromI'(p,p,)]. Work in progress
In this paper we have explored the emergence of oscillalS focusing on a better analytical approximationro{p, pa)

tory behavior in a mean-field model of FNNs. FNNs havethrough the inclusion of interactions among individuals,

been successfully used as models of collective behaviop "€ the perturbation approach, which needs the intr.od.uc—
from oscillations[11,14 to the problem of universal compu- ggﬁ' oﬁsan%?r:mﬁglet \SN;:;‘?_‘:C\{;IUG has to be found heuristi-
tation[20]. The introduction of mobility by simple units en- Y, y Y

. . Finally let us note that our analytic work makes clear that
ables us to go beyond the classical models based on exmtat%l[e does not make sense to consider the laxgandL cases
systemdg21] though it also makes it difficult to reach ana- ’

lytic results. Here, following a mean-field approach to the>Nee our system depends on the mean time of activity propa-

original FNN with sigmoidal response, we have derived ggation YthaJ(N'_'-’Pa),' \_Nh'?h grows withN andL so in a
simple analytic result that provides a good understanding forthermodynamic limit” it will diverge, and onr’(p,p,) that
the origin of oscillatory behavior and the existence of noise S density dependerisee Fig. 6. Therefore, in the limit of
induced transitions. largeN andL there will be no oscillations, which have been
Some simplifications on the FNN model have allowed usoPserved in both the FNN and the SFNRP]. Then, in what
to define the SFNN, with identical phenomenology but withSense do we refer to a “mean-field” theory? The point here
the possibility of performing analytical work. Working on 1S theannealed_m_ovemex_)f the mdw@ugls that decqrrelates
the p>p. phase we have assumed no spontaneous activatidiempletely their interactiongl8]. This is a mean-field ap-
and we have analyzed separately the inactivation process aRgoximation, despite its departure from the behavior of
the activation process, that is, the two parts that compose orfBean-field theories in equilibrium syster23].
oscillation in thep,” curve. We have derived a relation be-
tweeng andV in order to assure inactivation and we have
checked a hypothesis put forward[it6] in order to approxi- We thank our friends at the CSRG: Susanna C. Manrubia,
mate p.. This hypothesis and approximations of Bartolo Luque, and Jordi Bascompte. This work was sup-
Yinp,(N,L,pa) and 7’ (p, pa) = 7pe; provide apg" value that  ported by Grant No. DGYCIT PB94-1195.
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